3 research outputs found

    Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS

    Get PDF
    Publisher Copyright: ©2021 American Association for Cancer Research.In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone marrow (BM) histopathology is assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number of affected genes per pathway, demonstrating the algorithms' ability to identify relevant morphologic patterns. By converting regression models to texture and cellular composition, we reproduced the classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study highlights the potential of linking deep BM histopathology with genetics and clinical variables. SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-dimensional data are underused. By elucidating the association of morphologic features with clinical variables and molecular genetics, this study highlights the vast potential of convolutional neural networks in understanding MDS pathology and how genetics is reflected in BM morphology.See related commentary by Elemento, p. 195.Peer reviewe

    Somatic mutations and T-cell clonality in patients with immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is, however, implicated. To study whether somatic mutations in CD4(+) and CD8(+) T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset CVID and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2,533 immune-associated genes from CD4(+) and CD8(+) cells. Deep T-cell receptor b-sequencing was used to characterize CD4(+) and CD8(+) T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in CVID, and 48% in controls. Clonal hematopoiesis-associated variants in both CD4(+)and CD8(+) cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immuneand proliferative functions, such as STAT5B (2 patients), C5AR1 (2 patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, CVID patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4(+) and CD8(+) cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.Peer reviewe

    Somatic mutations and T-cell clonality in patients with immunodeficiency

    No full text
    Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients
    corecore